Unified Approach to Implicit and Explicit Solvent Simulations of Electrochemical Reaction Energetics

01 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


One of the major open challenges in ab initio simulations of the electrochemical interface is the determination of electrochemical barriers under a constant driving force. Existing methods to do so include extrapolation techniques based on fully explicit treatments of the electrolyte, as well as implicit solvent models which allow for a continuous variation in electrolyte charge. Emerging hybrid continuum models have the potential to revolutionize the field, since they account for the electrolyte with little computational cost while retaining some explicit electrolyte, representing a “best of both worlds” method. In this work, we present a unified approach to determine reaction energetics from both fully explicit, implicit, and hybrid treatments of the electrolyte based on a new multi-capacitor model of the electrochemical interface. A given electrode potential can be achieved by a variety of interfacial structures; a crucial insight from this work is that the effective surface charge gives the true driving force of electrochemical processes. In contrast, we show that the traditionally considered work function gives rise to multi-valued functions depending on the simulation cell size. Furthermore, we show that the reaction energetics are largely insensitive to the countercharge distribution chosen in hybrid implicit/explicit models, which means that any of the myriad implicit electrolyte models can be equivalently applied. This work thus paves the way for the accurate treatment of ab initio reaction energetics of general surface electrochemical processes using both implicit and explicit electrolyte.


Density Functional Theory
Heterogeneous catalysts

Supplementary materials

supp info


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.