Cu-Catalyzed Hydroboration of Benzylidenecyclopropanes: Reaction Optimization, (Hetero)Aryl Scope, and Origins of Pathway Selectivity

28 June 2019, Version 1


The copper-catalyzed hydroboration of benzylidenecyclopropanes, conveniently accessed in one step from readily available benzaldehydes, is reported. Under otherwise identical reaction conditions, two distinct phosphine ligands grant access to different products by either suppressing or promoting cyclopropane opening via β-carbon elimination. Computational studies provide insight into how the rigidity and steric environment of these different bis-phosphine ligands influence the relative activation energies of β-carbon elimination versus protodecupration from the key benzylcopper intermediate. The method tolerates a wide variety of heterocycles prevalent in clinical and pre-clinical drug development, giving access to valuable synthetic intermediates. The versatility of the tertiary cyclopropylboronic ester products is demonstrated through several derivatization reactions.


Copper Catalysis
Hydroboration Reaction
C–C Activation
Ligand Design
Alkene Functionalization

Supplementary materials

Supporting Info


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.