Theoretical and Computational Chemistry

Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning


Computational modeling of chemical and biological systems at atomic resolution is a crucial tool in the chemist's toolset. The use of computer simulations requires a balance between cost and accuracy: quantum-mechanical methods provide high accuracy but are computationally expensive and scale poorly to large systems, while classical force fields are cheap and scalable, but lack transferability to new systems. Machine learning can be used to achieve the best of both approaches. Here we train a general-purpose neural network potential (ANI-1ccx) that approaches CCSD(T)/CBS accuracy on benchmarks for reaction thermochemistry, isomerization, and drug-like molecular torsions. This is achieved by training a network to DFT data then using transfer learning techniques to retrain on a dataset of gold standard QM calculations (CCSD(T)/CBS) that optimally spans chemical space. The resulting potential is broadly applicable to materials science, biology and chemistry, and billions of times fasterthan CCSD(T)/CBS calculations.

Version notes

Final version


Thumbnail image of ccx_manuscript_joint.pdf
download asset ccx_manuscript_joint.pdf 5 MB [opens in a new tab]