Abstract
Toward practical modeling of local solvation effects of any solute in any solvent, we report a static and all-quantum mechanics based cluster-continuum approach for calculating single ion solvation free energies. This approach uses a global optimization procedure to identify low energy molecular clusters with different numbers of explicit solvent molecules and then employs the Smooth Overlap for Atomic Positions (SOAP) kernel to quantify the similarity between different low energy solute environments. From these data, we use sketch-map, a non-linear dimensionality reduction algorithm, to obtain a two-dimensional visual representation of the similarity between solute environments in differently sized microsolvated clusters. Without needing either dynamics simulations or an a priori knowledge of local solvation structure of the ions, this approach can be used to calculate solvation free energies with errors within five percent of experimental measurements for most cases.