Inorganic Chemistry

Hypergolic Triggers as Cocrystal Formers: Cocrystallization for Creating New Hypergolic Materials with Tunable Energy Content

Abstract

We demonstrate a cocrystal-based strategy to create new solid hypergols, i.e. materials exhibiting spontaneous ignition in contact with an oxidant, in which the energy content and density of the material can be changed without affecting the ignition delay. Using an imidazole-substituted decaborane as a hypergolic "trigger" component, in combination with energy-rich but non-hypergolic nitrobenzene, provides a hypergolic cocrystal with an ultrashort ignition delay, composed of hypergolic and fuel-containing domains.

Version notes

This is version 1.

Content

Thumbnail image of Manuscript_ChemRxiv.pdf
download asset Manuscript_ChemRxiv.pdf 0.40 MB [opens in a new tab]

Supplementary material

Thumbnail image of ESI_ChemRxiv.pdf
download asset ESI_ChemRxiv.pdf 1 MB [opens in a new tab]
ESI ChemRxiv