Visualization and Manipulation of Molecular Motion in Solid State through Photo-Induced Clusteroluminescence

17 June 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Building molecular machine has long been a dream of scientists as it is expected to revolutionize many aspects of technology and medicine. Implementing the solid-state molecular motion is the prerequisite for a practical molecular machine. However, few works on solid-state molecular motion have been reported and it is almost impossible to “see” the motion even if it happens. Here the light-driven molecular motion in solid state is discovered in two non-conjugated molecules s-DPE and s-DPE-TM, resulting in the formation of excited-state though-space complex (ESTSC). Meanwhile, the newly formed ESTSC generates an abnormal visible emission which is termed as clusteroluminescence. Notably, the original packing structure can recover from ESTSC when the light source is removed. These processes have been confirmed by time-resolved spectroscopy and quantum mechanics calculation. This work provides a new strategy to manipulate and “see” solid-state molecular motion and gains new insights into the mechanistic picture of clusteroluminescence.


Molecular Motions
through-space conjugation

Supplementary materials

Supporting Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.