We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings. Learn more about our Privacy Notice... [opens in a new tab]

Restriction of Access to Dark State: A New Mechanistic Model for Heteroatom-Containing AIE Systems

17 June 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Aggregation-induced emission (AIE) is an unusual photophysical phenomenon and provides an effective and advantageous strategy for the design of highly emissive materials in versatile applications such as sensing, imaging, and theragnosis. "Restriction of intramolecular motion" is the well-recognized working mechanism of AIE and have guided the molecular design of most AIE materials. However, it sometimes fails to be workable to some heteroatom-containing systems. Herein, in this work, we take more than one excited state into account and specify a mechanism –"restriction of access to dark state (RADS)" – to explain the AIE effect of heteroatom-containing molecules. An anthracene-based zinc ion probe named APA is chosen as the model compound, whose weak fluorescence in solution is ascribed to the easy access from the bright (π,π*) state to the closelying dark (n,π*) state caused by the strong vibronic coupling of the two excited states. By either metal complexation or aggregation, the dark state is less accessible due to the restriction of the molecular motion leading to the dark state and elevation of the dark state energy, thus the emission of the bright state is restored. RADS is found to be powerful in elucidating the photophysics of AIE materials with excited states which favor non-radiative decay, including overlap-forbidden states such as (n,π*) and CT states, spin-forbidden triplet states, which commonly exist in heteroatom-containing molecules.

Keywords

AIE

Supplementary materials

Title
Description
Actions
Title
RADS-SI-20190612
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.