“Hydrotriphylites” Li1-xFe1+x(PO4)1-y(OH)4y as Cathode Materials for Li-ion Batteries

11 June 2019, Version 1


Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) materials enabling the Li-ion battery technology for stationary energy storage applications, which are important for broad implementation of the renewable energy sources. Despite the apparent simplicity of its crystal structure and chemical composition, LiFePO4 is prone to off-stoichiometry and demonstrates rich defect chemistry owing to variations in the cation content and iron oxidation state, and to the redistribution of the cations and vacancies over two crystallographically distinct octahedral sites. The importance of the defects stems from their impact on the electrochemical performance, particularly on limiting the capacity and rate capability through blocking the Li ion diffusion along the channels of the olivine-type LiFePO4 structure. Up to now the polyanionic (i.e. phosphate) sublattice has been considered idle on this playground. Here, we demonstrate that under hydrothermal conditions up to 16% of the phosphate groups can be replaced with hydroxyl groups yielding the Li1-xFe1+x(PO4)1-y(OH)4y solid solutions, which we term “hydrotriphylites”. This substitution has tremendous effect on the chemical composition and crystal structure of the lithium iron phosphate causing abundant population of the Li-ion diffusion channels with the iron cations and off-center Li displacements due to their tighter bonding to oxygens. These perturbations trigger the formation of an acentric structure and increase the activation barriers for the Li-ion diffusion. The “hydrotriphylite”-type substitution also affects the magnetic properties by progressively lowering the Néel temperature. The off-stoichiometry caused by this substitution critically depends on the overall concentration of the precursors and reducing agent in the hydrothermal solutions, placing it among the most important parameters to control the chemical composition and defect concentration of the LiFePO4-based cathodes.


Lithium iron phosphate
lithium-ion battery
hydrothermal synthesis
crystal structure

Supplementary materials

ChemMater SI revised


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.