MasterMSM: A Package for Constructing Master Equation Models of Molecular Dynamics

07 June 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Markov state models (MSMs) have become one of the most important techniques for understanding biomolecular transitions from classical molecular dynamics (MD) simulations. MSMs provide a systematized way of accessing the long time kinetics of the system of interest from the short-timescale microscopic transitions observed in simulation trajectories. At the same time, they provide a consistent description of the equilibrium and dynamical properties of the system of interest, and they are ideally suited for comparisons against experiment. A few software packages exist for building MSMs, which have been widely adopted. Here we introduce MasterMSM, a new Python package that uses the master equation formulation of MSMs and provides a number of new algorithms for building and analyzing these models. We demonstrate some of the most distinctive features of the package, including the estimation of rates, definition of core-sets for transition based assignment of states, the estimation of committors and fluxes, and the sensitivity analysis of the emerging networks. The package is available at


Markov model
Molecular Dynamics Simulation
Molecular dynamics


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.