Facile Size-Controlled Synthesis of Fluorescent Carbon Nanoparticles with Size-Independent Optical Properties

07 June 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nanoparticle imaging probes and drug delivery systems have distinct advantages over free or diffusive delivery in that they can concentrate the imaging contrast agent and/or drug, elicit controlled release/degradation, and have a high surface area to volume ratio beneficial for attaching targeting ligands. The size of these nanoparticles affects delivery, retention, degradation rate, and sometimes the radiological properties of the particles. For many optically active nanoparticles (such as gold, silver, and quantum dots), the optical properties are directly dependent on the size and shape of the nanoparticles. While this provides a simplistic outlet for modifying the optical properties of those nanoparticles, it is limiting in that their applications are also dependent on morphology. In these works, we aim to determine if the optical properties of fluorescent carbon nanoparticles are dependent on size through variations in synthetic parameters. Fluorescent carbon nanoparticles with hydrodynamic diameters ranging from 10 – 500 nm were prepared through variations of sugar source, concentration of agave (as a sugar source) and incubation time. Through comparisons made between these nanoparticles, we found no change in the local absorbance maxima and refractive index, with < 5 nm shifting in fluorescence maxima location. We have observed that fluorescent carbon nanoparticles can be prepared within a large range of sizes (10 – 500 nm) without considerable shift in optical properties. Because of this observation, we can infer that the optical properties of fluorescent carbon nanoparticles are largely size independent.

Keywords

Carbon Nanoparticles
Fluorescence
Size Control Synthesis
Green Chemistry
Nanoparticles
Carbon

Supplementary materials

Title
Description
Actions
Title
Fig1
Description
Actions
Title
Fig2
Description
Actions
Title
Fig3
Description
Actions
Title
Fig4
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.