Abstract
Using a multiscale approach, we show that applied electric field does not affect significantly the hydrogen uptake of weakly polarizable metal-organic frameworks (MOFs). Nonetheless, we show that, for large MOF polarizabilities, the hydrogen uptake can double in applied electric field. We propose searching for a novel class of hydrogen storage materials, that of highly polarizable porous MOFs. Hydrogen uptake in such materials would be controlled by electric field, a much easier to adjust parameter than pressure or temperature.