Clickable Cellulosic Surfaces for Peptide-Based Bioassays

15 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The use of peptides in paper-based analytics is a highly appealing field, yet it suffers from severe limitations. This is mostly due to the loss of effective target recognition properties of this relatively small bioprobes upon nonspecific adsorption onto cellulose substrates. Here, we address this issue by introducing a simple polymer-based strategy to obtain clickable cellulosic surfaces, that we exploited for the chemoselective bioconjugation of peptide bioprobes. Our method largely outperformed standard adsorption-based immobilization strategy in a challenging, real-case immunoassay, namely the diagnostic discrimination of Zika+ individuals from healthy controls. Of note, the clickable polymeric coating not only allows efficient peptides bioconjugation, but it provides favorable anti-fouling properties to the cellulosic support. We envisage our strategy to broaden the repertoire of cellulosic materials manipulation and promote a renewed interest in peptide-based paper bioassays.

Keywords

click chemistry
peptides
bioassay
paper based diagnostic
immunoassays
polymer coating approach
bioconjugation strategy

Supplementary materials

Title
Description
Actions
Title
Clickable cellulosic surfaces for peptide-based bioassays
Description
Actions
Title
Supplementary finale
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.