Multiscale Electrolyte Transport Simulations for Lithium Ion Batteries

15 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Establishing a link between atomistic processes and battery cell behavior is a major challenge for lithium ion batteries. Focusing on liquid electrolytes, we describe parameter-free molecular dynamics predictions of their mass and charge transport properties. The simulations agree quantitatively with experiments across the full range of relevant ion concentrations and for different electrolyte compositions. We introduce a simple analytic form to describe the transport properties. Our results are used in an extended Newman electrochemical model, including a cell temperature prediction. This multi-scale approach provides quantitative agreement between calculated and measured discharge voltage of a battery and enables the computational optimization of the electrolyte formulation.


Lithium ion Batteries
Molecular Dynamics Simulation
Molecular dynamics
Newman model


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.