Precision Nanotube Mimics via Self-Assembly of Programmed Carbon Nanohoops

06 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The scalable production of homogenous, uniform carbon nanomaterials represents a key synthetic challenge for contemporary organic synthesis as nearly all current fabrication methods provide heterogenous mixtures of various carbonized products. For carbon nanotubes (CNTs) in particular, the inability to access structures with specific diameters or chiralities severely limits their potential applications. Here, we present a general approach to access solid-state CNT mimic structures via the self-assembly of fluorinated nanohoops, which can be synthesized in a scalable, size-selective fashion. X-ray crystallography reveals that these CNT mimics exhibit uniform channel diameters that are precisely defined by the diameter of their nanohoop constituents, which self-assemble in a tubular fashion via a combination of arene-pefluoroarene and C—H---F interactions. The nanotube-like assembly of these systems results in capabilities such as linear guest alignment and permanently accessible channels, both of which are observed in CNTs but not in the analogous all-hydrocarbon nanohoop systems. Calculations suggest that the organofluorine interactions observed in the crystal structure are indeed critical in the self-assembly and robustness of the CNT mimic systems. This work establishes the self-assembly of carbon nanohoops via weak interactions as an attractive means to generate solid-state materials that mimic carbon nanotubes, importantly with the unparalleled tunability enabled by organic synthesis.


Carbon Nanotube


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.