Density Functionals with Quantum Chemical Accuracy: From Machine Learning to Molecular Dynamics

06 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry, but accuracies for many molecules are limited to 2-3 kcal/mol with presently-available functionals. Ab initio methods, such as coupled-cluster, routinely produce much higher accuracy, but computational costs limit their application to small molecules. We create density functionals from coupled-cluster energies, based only on DFT densities, via machine learning. These functionals attain quantum chemical accuracy (errors below 1 kcal/mol). Moreover, density-based ∆-learning (learning only the correction to a standard DFT calculation, ∆-DFT) significantly reduces the amount of training data required. We demonstrate these concepts for a single water molecule, and then illustrate how to include molecular symmetries with ethanol. Finally, we highlight the robustness of ∆-DFT by correcting DFT simulations of resorcinol on the fly to obtain molecular dynamics (MD) trajectories with coupled-cluster accuracy. Thus ∆-DFT opens the door to running gas-phase MD simulations with quantum chemical accuracy, even for strained geometries and conformer changes where standard DFT is quantitatively incorrect.


Density Functional Theory
Machine Learning
Molecular Dynamics
Electronic Structure

Supplementary materials

BogojeskiVogt mldft esi


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.