Physical Chemistry

Direct Mapping of Curve-Crossing Dynamics in IBr by Attosecond Transient Absorption Spectroscopy


The electronic character of photoexcited molecules can abruptly change at avoided crossings and conical intersections. Here, we report direct mapping of the coupled interplay between electrons and nuclei in a prototype molecule, iodine monobromide (IBr), using attosecond transient absorption spectroscopy. A few-femtosecond visible pulse resonantly excites the B(3_0+) state of IBr and the accompanying photodissociation dynamics are tracked by an attosecond extreme-ultraviolet pulse that simultaneously probes the I-4d and Br-3d corelevel absorption edges. Direct comparison with quantum mechanical simulations unambiguously identifies the core-level absorption features associated with adiabatic and diabatic channels at the B/Y avoided crossing and concurrent two-photon dissociation processes that involve the Y/Z avoided crossing. The results show clear evidence for rapid switching of valence molecularorbital occupations at the avoided crossing.

Version notes



Thumbnail image of IBr_chemrxiv_20190304.pdf