The Novel Two-Metal-Ion Mechanism for Type II Topoisomerases by the QM/MM and Free Energy Study

09 April 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Catalysis of Type II topoisomerase employs a combination of nucleobase and divalent metal ions with a long discussing two-metal-ion mechanism. High-level quantum mechanics/molecular mechanics (QM/MM) and thermodynamics cycle perturbation (QTCP) free energy calculations support an associative novel two-metal-ion mechanism and elucidate the catalytic roles of metal ion, in which one divalent metal ion stabilizes the phosphoric pentacovalent transition state and the 3’‒OH leaving group while the secondary one facilitates to reorganize the nearby hydrogen network and residues. The DNA scission is fast and exothermic that a stepwise pathway proceeds for the nucleophilic attack by Y805 following by the protonation of the ribose alkoxide, inducing the formation of a bending DNA strand. These findings advance the fundamental knowledge on topoisomerases and the development of targeting anticancer drugs.


QM/MM free energy simulation
type II topoisomerases

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.