Electronic Structure, Electron-Phonon Coupling and Charge Transport in Crystalline Rubrene Under Mechanical Strain

23 April 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Motivated by the potential for application of organic semiconductors in exible electronics, we present a theoretical study aiming at elucidating the interplay between mechanical strain and electronic, vibrational and charge transport properties of the prototypical high-mobility molecular semiconductor rubrene. Our study considers several factors that can play a role in the electro-mechanical response of a soft, van-der-Waals bonded, molecular crystal, such as intermolecular charge transfer integrals, lattice dynamics and electron phonon coupling. We find that compressive strain leads to an increase in magnitude of charge transfer integrals but also of the energetic disorder hampering the mobility. Charge transport simulations, based on the transient localization framework and fed with first-principles inputs, reveal a remarkably different response to strain applied along different crystal axes, in line with most recent experiments. The critical interplay between energetic disorder of intrinsic and extrinsic nature on the mobility-strain relationship is also discussed. The theoretical approach proposed in this work paves the way for the systematic study of the electro-mechanical response of different classes of high-mobility molecular semiconductors.


Charge transport
Strain Effects
lattice dynamics simulations
Organic Semiconductors


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.