Multiscale Simulations of Singlet and Triplet Exciton Dynamics in Disordered Molecular Systems based on Many-Body Green’s Functions Theory

19 April 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a multiscale model based on Many-Body Green’s Function Theory in the GW approximation and the Bethe-Salpeter Equation (GW-BSE) for the simulation singlet and triplet exciton transport in molecular materials. Dynamics of coupled electron-hole pairs is modeled as a sequence of incoherent tunneling and decay events in a disordered morphology obtained at room temperature from Molecular Dynamics. The ingredients of the rates associated to the events, i.e., reorganization energies, site energies, lifetimes, and coupling elements, are determined from a combination of GW-BSE and classical polarizable force field techniques. Kinetic Monte Carlo simulations were then employed to evaluate dynamical properties such as the excitonic diffusion tensor and diffusion lengths. Using DCV5T-Me(3,3), a crystalline organic semiconductor, we demonstrate how this multiscale approach provides insight into the fundamental factors driving the transport processes.
Comparing the results obtained with different calculation models, we investigate in particular the effects of charge-transfer mediated high exciton coupling and the influence of internal site energy disorder due to conformational variations. We show that a small number of high coupling elements indicative of delocalized exciton states does not impact the overall dynamics perceptively. Molecules with energies in the tail of the excitonic density of states dominate singlet decay, independent of the level of disorder taken into account in the simulation. Overall, our approach yields singlet diffusion lengths on the order of 10 nm as expected for disordered molecular materials.

Keywords

Multiscale Modelling
Excited State Electronic Structures
Disordered Organic Electronic Materials
Kinetic Monte Carlo Simulations

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.