Infinite Dilution Activity Coefficients as Constraints for Force Field Parameterization and Method Development

05 March 2019, Version 3
This content is a preprint and has not undergone peer review at the time of posting.


Molecular simulations begin with an underlying energy model or force field, and from this, can predict diverse physical properties.

However, force fields were often developed with relatively limited datasets, yet accuracy for diverse properties across a broad chemical space is desirable, so tests of such accuracy are particularly important. Here, to this end, we calculate 237 infinite dilution activity coefficients (IDACs), comparing with experimental values from NIST's ThermoML database. We found that calculated IDAC values correlate strongly with experiment (Pearson R of 0.92+/- 0.01), and allow us to identify specific functional groups which appear to present challenges to the force field employed. One potentially valuable aspect of IDACs, as compared to solvation free energies which have been frequently employed as force field tests, is that the same molecules serve both as solutes and solvents in different cases, allowing us to ensure force fields are not overly tuned to one particular environment or solvent.


activity coefficients
free energy calculations
molecular dynamics
force fields

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.