Theoretical and Computational Chemistry

First Principles Micro-kinetic Model of Catalytic Non-oxidative Dehydrogenation of Ethane over Close-packed Metallic Facets



Catalytic dehydrogenation of light alkanes may other more efficient routes to selectively producing light olefins, which are some of the most important chemical building blocks in the industry, in terms of scale. We present a descriptor based micro-kinetic model of the trends in selectivity and activity of non-oxidative dehydrogenation of ethane over close-packed metal facets and through varied reaction conditions. Our model predicts and explains the experimentally observed promotion effect on turnover rate from co-feeding hydrogen as an effect of the shifting equilibria in steady state. At low conversion reaction conditions over Pt, the path to ethene goes through ethane dehydrogenation to ethyl, CH 3 CH 2 *, then to ethene while the non-selective pathway to methane and deeply dehydrogenated species is predicted to go through dehydrogenation via CH 3 CH*. This implies that the desorption step of ethene is not the limiting step for selectivity and that geometric effects that stabilize CH 2 CH 2 * compared to CH 3 CH* are desirable properties of a better catalyst. Removing reactive bridge and 3-fold sites facilitates this, which may be achievable by sufficient concentrations of tin in platinum. The included model code furthermore provides a base for easy tuning and for expanding the study to other thermodynamic conditions, other facets, alloys or the reaction network to longer hydrocarbons or to oxidative pathways.


Thumbnail image of manuscript_preprint.pdf

Supplementary material

Thumbnail image of supplementary.pdf
Thumbnail image of
mkm code and data