Epitaxial Dimers and Auger-Assisted De-Trapping in PbS Quantum Dot Solids

20 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electronic trap states limit the overall power conversion efficiency of quantum dot (QD) solar cells by inhibiting charge carrier transport and reducing the open-circuit voltage. Here, we explore the dynamic interaction of charge carriers between band edge states and sub-band trap states using broadband transient absorption spectroscopy. In monodisperse arrays of 4-5 nm diameter PbS QDs, we observe an optically active trap state ~100-200 meV below the band edge that occurs at a frequency of 1 in ~2500 QDs. Uncoupled QD solids with oleic acid ligands show trap-to-ground-state recombination that resembles Auger recombination. In electronically coupled QD solids, we observe entropically-driven uphill thermalization of trapped charge carriers from the trap state to the band edge via two distinct mechanisms: Auger-assisted charge transfer (~35 ps) and thermally activated hopping (~500 ps). Photophysical characterization combined with atomistic simulations and high-resolution transmission electron microscopy suggest that these states arise from epitaxially fused pairs of QDs – rather than electron or hole traps at the QD surface – offering new strategies for improving the efficiency of QD solar cells.

Keywords

nanocrystals
trap states
charge transport
excitons
carrier dynamics
ultrafast spectroscopy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.