Organic Chemistry

Synthesis and Reactivity of Precolibactin 886


The clb gene cluster encodes the biosynthesis of metabolites known as precolibactins and colibactins. The clb pathway is found in gut commensal E. coli, and clb metabolites are thought to initiate colorectal cancer via DNA cross-linking. Precolibactin 886 (1) is one of the most complex isolated clb metabolites; it contains a 15-atom macrocycle and an unusual 5-hydroxy-3-oxazoline ring. Here we report confirmation of the structural assignment via a biomimetic synthesis of precolibactin 886 (1) proceeding through the amino alcohol 9. Double oxidation of 9 afforded the unstable α-ketoimine 2 which underwent macrocyclization to precolibactin 886 (1) upon HPLC purification (3% from 9). Studies of the putative precolibactin 886 (1) biosynthetic precursor 2, the model α-ketoimine 25, and the α-dicarbonyl 26 revealed that these compounds are susceptible to nucleophilic rupture of the C36–C37 bond. Moreover, cleavage of 2 produces other known clb metabolites or biosynthetic intermediates. This unexpected reactivity explains the difficulties in isolating full clb metabolites and accounts for the structure of a recently identified colibactin–adenine adduct. The colibactin peptidase ClbP deacylates synthetic precolibactin 886 (1) to form a non-genotoxic pyridone, suggesting precolibactin 886 (1) lies off-path of the major biosynthetic route.


Thumbnail image of Precoli886 Manu Final 021819.pdf