Regulating Transition Metal Catalysis Through Interference by Short RNAs

12 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Here we report the discovery of a Au(I)-DNA hybrid catalyst that is compatible with biological media and whose reactivity can be regulated by small complementary nucleic acid sequences. The development of this catalytic system was enabled by the discovery of a novel Au(I) metal-mediated base pair. We find that Au(I) binds selectively to double stranded DNA containing C–T mismatches. In the Au(I)-DNA catalyst's latent state, the Au(I) ion is sequestered by the mismatch such that it is coordinatively saturated, rendering it catalytically inactive. Upon addition of an RNA or DNA strand that is complementary to the latent catalyst's oligonucleotide backbone, catalytic activity is induced leading to a 7-fold increase in formation of fluorescent product, forged through a Au(I)-catalyzed hydroamination reaction. Further development of this catalytic system will allow for temporal and spatial control of transition metal catalysis through gene transcription.


transition-metal catalysis


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.