Drug Analogs from Fragment Based Long Short-Term Memory Generative Neural Networks

22 February 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Several recent reports have shown that long short-term memory generative neural networks (LSTM) of the type used for grammar learning efficiently learn to write SMILES of drug-like compounds when trained with SMILES from a database of bioactive compounds such as ChEMBL and can later produce focused sets upon transfer learning with compounds of specific bioactivity profiles. Here we trained an LSTM using molecules taken either from ChEMBL, DrugBank, commercially available fragments, or from FDB-17 (a database of fragments up to 17 atoms) and performed transfer learning to a single known drug to obtain new analogs of this drug. We found that this approach readily generates hundreds of relevant and diverse new drug analogs and works best with training sets of around 40,000 compounds as simple as commercial fragments. These data suggest that fragment-based LSTM offer a promising method for new molecule generation.

Keywords

Drug analogs
Fragment based drug discovery
cheminformatics
Machine learning
LSTM
ChEMBL

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.