Teaching Enzyme Catalysis Using an Open Source Framework for Interactive Molecular Dynamics in Virtual Reality

11 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The reemergence of virtual reality (VR) in the last few years has led to affordable commodity hardware that can offer new ways to teach, communicate and engage with difficult concepts, especially those which involve complicated 3D motion and spatial manipulation. In a higher education context, these immersive technologies make it possible to teach complex molecular topics in a way that may aid or even supersede traditional approaches such as molecular models, textbook images, and traditional screen-based computational environments. In this work we describe a study involving 24 third-year UK undergraduate chemistry students who undertook a traditional computational chemistry class complemented with an additional component utilising real-time interactive molecular dynamics simulations in VR (iMD-VR). Exploiting the flexibility of an open-source iMD-VR framework which we recently described,(1) and building on recent work where we demonstrated the ability to use this framework to run ‘on-the-fly’ density functional theory in VR at interactive speeds,2 we designed three tasks for students to complete in iMD-VR: (1) interactive rearrangement of the chorismate molecule to prephenate using forces obtained from ‘on-the-fly’ density functional theory calculations; (2) unbinding of chorismate from the active site chorismate mutase enzyme using molecular-mechanics forces calculated in real-time; and (3) docking of chorismate with chorismate mutase using real-time molecular mechanics forces. A survey indicated that most students found the iMD-VR component more engaging than the traditional approach, and also that it improved their perceived educational outcomes and their interest in continuing on in the field of computational sciences.


Density Functional Theory
Virtual Reality
Chemical Education
Interactive Molecular Dynamics
Chorismate Mutase
Undergraduate Students


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.