Aromaticity and Antiaromaticity in the Excited States of Porphyrin Nanorings

04 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Aromaticity can be a useful concept for predicting the behavior of excited states. Here we show that π-conjugated porphyrin nanorings exhibit size-dependent excited-state global aromaticity and antiaromaticity, for rings containing up to eight porphyrin subunits, although they have no significant global aromaticity in their neutral singlet ground states. Applying Baird’s law, odd rings ([4n] π-electrons) are aromatic in their excited states, whereas the excited states of even rings ([4n+2] π-electrons) are antiaromatic. These predictions are borne out by density functional theory (DFT) studies of the nucleus-independent chemical shift in the T1 triplet state of each ring, which reveal the critical importance of the triplet delocalization to the emergence of excited-state aromaticity. The singlet excited states (S1) are explored by measurements of the radiative rate and fluorescence peak wavelength, revealing a subtle odd-even alternation as a function of ring size, consistent with symmetry-breaking in antiaromatic excited states.

Keywords

aromaticity
porphyrin
excited-state aromaticity
antiaromaticity
photoluminescence emission

Supplementary materials

Title
Description
Actions
Title
si-compressed
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.