Principles of Dynamic Heterogeneous Catalysis: Surface Resonance and Turnover Frequency Response

01 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Acceleration of catalytic transformation of molecules via heterogeneous materials occurs through design of active binding sites to optimally balance the requirements of all steps in a catalytic cycle. In accordance with the Sabatier principle, the characteristics of a single binding site are balanced between at least two transient phenomena, leading to maximum possible catalytic activity at a single, static condition (i.e., a ‘volcano curve’ peak). In this work, a dynamic heterogeneous catalyst oscillating between two electronic states was evaluated to demonstrate catalytic activity as much as three-to-four orders of magnitude (1,000-10,000x) above the Sabatier maximum. Surface substrate binding energies were varied by a given amplitude (0.1 < ΔU < 3.0 eV) over a broad range of frequencies (10-4 < f < 1011 s-1) in square, sinusoidal, sawtooth, and triangular waveforms to characterize surface dynamics impact on average catalytic turnover frequency. Catalytic systems were shown to exhibit order-of-magnitude dynamic rate enhancement at ‘surface resonance’ defined as the band of frequencies (e.g., 103-107 s-1) where the applied surface waveform kinetics were comparable to kinetics of individual microkinetic chemical reaction steps. Key dynamic performance parameters are discussed regarding industrial catalytic chemistries and implementation in physical dynamic systems operating above kilohertz frequencies.



Supplementary materials

Supporting Information Dauenhauer


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.