Computational Screening of Roles of Defects and Metal Substitution on Reactivity of Different Single- vs Double-Node Metal–Organic Frameworks for Sarin Decomposition

22 February 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Understanding how different factors affect the electronic prop-erties of metal-organic frameworks (MOFs) is critical to under-standing their potential for catalysis and to serve as catalyst supports. In this work, periodic dispersion corrected PBE cal-culations are performed to assess the catalytic activity of dif-ferent Zr6 vs Zr12 metal-organic frameworks (MOFs) for the heterogeneous catalytic hydrolysis of the chemical warfare agent (CWA) sarin. Using a comprehensive series of extended periodic models capable of capturing long-range sar-in/water/framework interactions in both Zr6 and Zr12 MOFs, the effect of numbers and morphologies of defective sites as well as ZrIV substitution with heavier CeIV are thoroughly in-vestigated. Our calculations show that hydrogen bonds in-volving both metal-oxide nodes and organic linkers can play important roles in the catalysis. Insights derived from this work should inform the design and realization of more effec-tive and robust next-generation MOF-based heterogeneous catalysts.


Metal-Organic Framework (MOF)
Zr6 vs Zr12 MOFs
Heterogeneous Catalysis
Chemical Warfare Agent Hydrolysis


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.