Taming Combinatorial Explosion of the Formose Reaction via Recursion within Mineral Environments

13 February 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

One-pot reactions of simple precursors, such as those found in the formose reaction or formamide condensation, continuously lead to combinatorial explosions in which simple building blocks capable of function exist, but are in insufficient concentration to self-organize, adapt, and thus generate complexity. We set out to explore the effect of recursion on such complex mixtures by ‘seeding’ the product mixture into a fresh version of the reaction, with the inclusion of different mineral environments, over a number of reaction cycles. Through untargeted UPLC-HRMS analysis of the mixtures we found that the overall number of products detected reduces as the number of cycles increases, as a result of recursively enhanced mineral environment selectivity, thus limiting the combinatorial explosion. This discovery demonstrates how the involvement of mineral surfaces with simple reactions could lead to the emergence of some building blocks found in RNA, Ribose and Uracil, under much simpler conditions that originally thought.

Keywords

Systems Chemistry
Prebiotic Chemistry
Complex Mixtures
Minerals
recursive chemistry
emergence of chemical genetics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.