Long-Range Entropic Effects on Protein Intrinsically Disordered Regions

12 February 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Entropy calculations represent one of the most challenging steps in obtaining the binding free energy in proteins and their complexes, which is a grand challenge in computational biology. In this paper we define the workframe of a novel method to calculate structural entropy for protein molecular simulation : SQuE ( Strucutral Quantifier of Entropy). Using a first degree approximation for the probability distribution, we were able to calculate the entropic effects that emerges from a intrinsically disordered (ID) region in UDP-glucose 6-dehydrogenase (UGDH) protein structure. We were able to quantify the configurational entropy difference in the structured core caused by the truncation of the C-terminal ID-tail, and evaluate the protein conformational changes in the structured domain.


Protein Dynamics
Molecular Dynamics Simulations Knowledge
Free Energy Landscape


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.