Light-driven charge accumulation of a molecular Cu(I) complex for storage of photoredox equivalents

10 January 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


The diurnal day/night cycle is presently of great interest for harvesting solar energy aimed at rendering suitable energy storage schemes. To this end we present a noble-metal free system based on a Cu(I) 4H-imidazolate complex, that is efficiently photoreduced in the presence of a sacrificial donor. The two-electron reduced species obtained can be stored in the dark for more than 14 hours. In a dark reaction, the photoredox equivalents can subsequently be transferred to the electron acceptors methyl viologen or oxygen, while the starting Cu(I) complex is almost completely regained. Repetition of this process revealed a charging capacity of 72% after four cycles. The implications of light-driven charge accumulation and prolonged storage times for solar battery and photoredox catalysis are discussed


solar energy conversion
day/night cycle
copper complex
photoredox equivalents
energy storage

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.