Pd-Catalyzed C–N Coupling Reactions Facilitated by Organic Bases: Mechanistic Investigation Leads to Enhanced Reactivity in the Arylation of Weakly Binding Amines

10 January 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The ability to use soluble organic amine bases in Pd-catalyzed C–N cross-coupling reactions has provided a long-awaited solution to the many issues associated with employing traditional, heterogeneous reaction conditions. However, little is known about the precise function of these bases in the catalytic cycle and about the effect of variations in base structure on catalyst reactivity. We used 19F NMR to analyze the kinetic behavior of C–N coupling reactions facilitated by different organic bases. In the case of aniline coupling reactions employing DBU, the resting state was a DBU-bound oxidative addition complex, LPd(DBU)(Ar)X, and the reaction was found to be inhibited by base. In general, however, depending on the binding properties of the chosen organic base, increased concentration of the base can have a positive or negative influence on the reaction rate. We propose a model in which the turnover-limiting step of the catalytic cycle depends on the relative nucleophilicity of the base compared to that of the amine. This hypothesis guided the discovery of new reaction conditions for the coupling of weakly binding amines, including secondary aryl amines, which were unreactive nucleophiles in our original protocol.


Organic bases
Mechanistic study

Supplementary materials

AlPhos CN Mechanism SI Draft 10


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.