An Evolutionary Approach to Constructing a Deep Feedforward Neural Network for Prediction of Electronic Coupling Elements in Molecular Materials

20 December 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


We present a general framework for the construction of a deep feedforward neural network (FFNN) to predict distance and orientation dependent electronic coupling elements in disordered molecular materials. An evolutionary algorithm automatizes the selection of an optimal architecture of the artificial neural network within a predefined search space. Systematic guidance, beyond minimizing the model error with stochastic gradient descent based backpropagation, is provided by simultaneous maximization of a model fitness that takes into account additional physical properties, such as the field-dependent carrier mobility. As a prototypical system, we consider hole transport in amorphous tris(8-hydroxyquinolinato)aluminum. Reference data for training and validation is obtained from multiscale ab initio simulations, in which coupling elements are evaluated using density-functional theory, for a system containing 4096 molecules. The Coulomb matrix representation is chosen to encode the explicit molecular pair coordinates into a rotation and translation invariant feature set for the FFNN. The final optimized deep feedforward neural network is tested for transport models without and with energetic disorder. It predicts electronic coupling elements and mobilities in excellent agreement with the reference data. Such a FFNN is readily applicable to much larger systems at negligible computational cost, providing a powerful surrogate model to overcome the size limitations of the ab initio approach.


multiscale modeling
charge transport
neural networks
organic semiconductors
density functional theory
electron transfer
electron transport


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.