Order-disorder transition in Cu2ZnSnS4 solar cells from Monte Carlo simulations

12 November 2018, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Kesterite-structured Cu2ZnSnS4 (CZTS) is an earth-abundant and non-toxic semiconductor that is being studied for use as the absorber layer in thin-film solar cells. Currently, the power-conversion efficiencies of this technology fall short of the requirements for commercialisation. Disorder in the Cu-Zn sub-lattice has been observed and is proposed as one explanation for the shortcomings of CZTS solar cells. Cation site disorder averaged over a macroscopic sample does not provide insights into the microscopic cation distribution that will interact with photogenerated electrons and holes. To provide atomistic insight into Cu-Zn disorder, we have developed a Monte Carlo (MC) model based on pairwise electrostatic interactions. Substitutional disorder amongst Cu and Zn ions in Cu-Zn (001) planes on the 2\textit{c} and 2\textit{d} Wyckoff sites -- 2D disorder -- has been proposed as the dominant form of Cu/Zn disorder in near-stoichiometric crystals. We use our model to study the Cu/Zn order-disorder transition in 2D but also allow Zn to substitute onto the Cu 2\textit{a} site -- 3D disorder -- including Cu-Sn (001) planes. We find that defects are less concentrated in Cu-Sn (001) planes but that Zn ions readily substitute onto the Cu 2\textit{a} site and that the critical temperature is lowered for 3D disorder.

Keywords

kesterite
CZTS
disorder
Monte Carlo

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.