Machine Learning for Organic Cage Property Prediction

23 August 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We use machine learning to predict shape persistence and cavity size in porous organic cages. The majority of hypothetical organic cages suffer from a lack of shape persistence and as a result lack intrinsic porosity, rendering them unsuitable for many applications. We have created the largest computational database of these molecules to date, numbering 63,472 cages, formed through a range of reaction chemistries and in

multiple topologies. We study our database and identify features which lead to the formation of shape persistent cages. We find that the imine condensation of trialdehydes and diamines in a [4+6] reaction is the most likely to result in shape persistent cages, whereas thiol reactions are most likely to give collapsed cages. Using this database, we develop machine learning models capable of predicting shape persistence with an accuracy of up to 93%, reducing the time taken to predict this property to milliseconds, and removing the need for specialist software. In addition, we develop machine learning models for two other key properties of these molecules, cavity size and symmetry. We provide open-source implementations of our models, together with the accompanying

data sets, and an online tool giving users access to our models to easily obtain predictions for a hypothetical cage prior to a synthesis attempt.

Keywords

porous organic cages
machine learning
porosity
shape persistence
materials discovery

Supplementary materials

Title
Description
Actions
Title
ML POC ChemRxiv SI
Description
Actions
Title
create structs
Description
Actions
Title
database
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.