Positive Functional Synergy of Structurally Integrated, Designed Artificial Protein Dimers Assembled by Fully Genetically Encoded Click Chemistry

29 November 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We combined in silicomodelling with fully genetically encoded strain promoted azide-alkyne cycloaddition, to construct bespoke protein dimers. Using fluorescent proteins GFP and Venus as models, homo and heterodimers were constructed that switched ON once assembled and displayed enhanced spectral properties. The determined molecular structure reveals long range polar bond networks involving amino acids and structured water molecules play a key role in activation and functional enhancement by directly linking the two functional centres. Single molecule analysis revealed the dimer is more resistant to photobleaching spending longer times in the ON state with only one CRO likely to be active at any one time. Thus, genetically encoded bioorthogonal chemistry can be used beyond simple passive linkage approaches to generate new and truly integrated protein complexes that form long range bonds networks, which have a profound effect on function and our understanding of fluorescent protein function.

Keywords

Protein Engineering Protein engineers
Non-natural amino acids
Reprogrammed genetic code
Strain Promoted Click Chemistry
protein oligomers
Protein structure determination
Click Chemistry
bioorthogonal click chemistry

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.