On the Choice of Coordinates in Anharmonic Theoretical Vibrational Spectroscopy

05 November 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

By a suitable choice of coordinates,the computational effort required for calculations of anharmonic vibrational spectra can be reduced significantly. By using suitable localized-mode coordinates obtained from an orthogonal transformation of the conventionally used normal-mode coordinates, anharmonic couplings between modescan be significantly reduced. However, such a transformation introduces harmonic couplings between the localized modes. To elucidate the role of these harmonic couplings, we consider vibrational self-consistent field (VSCF) / vibrational configuration interaction (VCI) calculations for both few-mode model systems and for ethene as a molecular test case. We show that large harmonic couplings can result in significant errors in localized-mode L-VSCF/L-VCI calculations and study the convergence with respect to the size of the VCI excitation space. To further elucidate the errors introduced by harmonic couplings, we discuss the connection between L-VSCF/L-VCI and vibrational exciton models. With the help of our results, we propose an algorithm for the localization of normal modes in suitable subsets that are chosen to strictly limit the errors introduced by the harmonic couplings while still leading to maximally localized modes.

Keywords

vibrational spectroscopy
anharmonic quantum chemical calculations
vibrational exciton model

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.