Encoding Metal-Cation Arrangements in Metal-Organic Frameworks for Programming the Composition of Electrocatalytically Active Multi-Metal Oxides

28 November 2018, Version 1

Abstract

In the present contribution, we report how through the use of metal-organic frameworks (MOFs) composed of addressable combinations of up to four different metal elements it is possible to program the composition of multi-metal oxides, which are not attainable by other synthetic methodologies. Thus, due to the ability to distribute multiple metal cations at specific locations in the MOF secondary building units it is possible to code and transfer selected metal ratios to multi-metal oxides with novel, desired compositions through a simple calcination process. The demonstration of an enhancement in the electrocatalytic activity of new oxides by pre-adjusting the metal ratios is here reported for the oxygen reduction reaction, for which activity values comparable to commercial Pt/C catalysts are reached, while showing long stability and methanol tolerance.

Keywords

metal-organic frameworks (MOFs)
Oxygen Reduction Reaction
spinel oxides

Supplementary materials

Title
Description
Actions
Title
Supporting information preprint
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.