Li-ion Conductive Li3PO4-Li3BO3-Li2SO4 Mixture: Prevision through Density Functional Molecular Dynamics and Machine Learning

27 November 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The development of high Li-ion conductive solid electrolytes is crucial for the practical use of all solid-state Li-ion batteries. The mixing of hetero Li-ion conductive substances is a known method for enhancing the Li-ion conductivity more than in the original substances. In this study, using computer simulations, we proved that a ternary Li3PO4-Li3BO3-Li2SO4system has the potential to demonstrate improved Li-ion conductivity based on the introduction of a quasi-Li/oxygen vacancy. The Li-ion conductivities of this ternary system were calculated using several model systems based on the density functional molecular dynamics under an isothermal-isobaric ensemble. However, an exploration using the density functional molecular dynamics cannot cover the entire combinatorial space owing to a lack of computational capability. To search through a vast combinatorial space, we conducted analyses using a machine learning technique. The analysis results clarify the relationship between Li-ion conductivity and phonon free energy, and allow the optimum composition ratio with the highest Li-ion conductivity to be predicted.

Keywords

Li-ion battery
Density functional molecular dynamics
Machine learning

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.