Polymer Science

Photocatalytically Active Ladder Polymers

Abstract

Conjugated ladder polymers (cLaPs) are introduced as organic semiconductors for photocatalytic hydrogen evolution from water under sacrificial conditions. Starting from a linear conjugated polymer (cLiP1), two ladder polymers are synthesized via post-polymerization annulation and oxidation techniques to generate rigidified, planarized materials bearing dibenzo[b,d]thiophene (cLaP1) and dibenzo[b,d]thiophene sulfone subunits (cLaP2). The high photocatalytic activity of cLaP1 (1307 μmol h−1 g−1) in comparison to cLaP2 (18 μmol h−1 g−1) under broadband illumination (λ >295 nm) in presence of a hole-scavenger is attributed to a higher yield of long-lived charges (µs–ms timescale), as evidenced by transient absorption spectroscopy. Additionally, cLaP1 has a larger overpotential for proton reduction and thus an increased driving force for the evolution of hydrogen under sacrificial conditions.

Version notes

First version of the manuscript (V1)

Content

Thumbnail image of Article_20181121_PrePrint.pdf

Supplementary material

Thumbnail image of SupportingInformation_20181121_Preprint.pdf
SupportingInformation 20181121 Preprint