Ammonia as Proton Conducting Medium Confined in Porous Materials

26 November 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular confinement within a limited space induces unique behaviour not seen in bulk systems. In particular, the proton diffusion in conducting medium under confined conditions is significantly affected by the surrounding environment.H2O, efficient conducting medium, confined in hydrophobic channels forms unique clusters allowing rapid diffusion, whereas confined NH3, having a similar degenerate system (Fig. 1a), has not been reported. Herein, we show NH3-mediated proton conduction in microporous metal–organic frameworks (MOFs), MIL-53(Al) functionalized with (-COOH)2, -NH2, -OH and -H. Anhydrous NH3 gas is trapped in the pore by proton donation of frameworks and forms hydrogen bonding networks exhibiting a remarkably enhanced proton conductivity. The crystallographic analysis and solid-state NMR clarify the veiled proton diffusion mechanism and unique dynamic behaviour of confined NH3.


Keywords

ammonia
proton conductor
metal-organic framework
conducting medium
hydrogen bondings

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.