A Responsive MRI Contrast Agent for Detection of Excess copper(II) in the Liver in Vivo

20 November 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The design, synthesis, and properties of a new gadolinium-based copper-responsive MRI contrast agents are presented in detail here. The sensor (GdL1) has high selectivity for copper ions and exhibits a 47% increase in r1 relaxivity upon binding to 1 equivalent of Cu2+ in aqueous buffer. Interestingly, in the presence of physiological levels of human serum albumin (HSA), the r1 relaxivity is amplified even further up to 270%. Additional spectroscopic and XAS studies show that Cu2+ is coordinated by two carboxylic acid groups and the single amine group on an appended side-chain of GdL1 and forms a ternary complex with HSA (GdL1-Cu2+-HSA). T1-weighted in vivo imaging demonstrates that GdL1 can detect basal, endogenous labile copper(II) ions in living mice. This offers a unique opportunity to explore the role of copper ions in the development and progression of neurological diseases such as Wilson disease.

Keywords

MRI contrast enhancement agents
copper homeostasis

Supplementary materials

Title
Description
Actions
Title
Supporting Info Cu P
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.