A Fast Approximation for Adaptive Wavelength Selection for Infrared Chemical Sensors

02 November 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Active mid-infrared spectroscopy with tunable lasers is a leading technology for standoff detection and identification of trace chemicals. Information-theoretic optimal selection of the laser wavelength offers the promise of increased detection confidence at lower abundances and with fewer wavelengths. Reducing the number of wavelengths required enables faster detections and lowers sensor power consumption while keeping the optical power under eye safety limits. This paper presents an approximation to the mutual information which operates ~40000x faster than traditional techniques, thereby making near-optimal real-time sensor control computationally feasible. Application of this technique to synthetic data suggests it can reduce the number of wavelengths needed by a factor of two relative to an evenly-spaced grid, with even higher gains for chemicals with weak signatures.

Keywords

chemical identification
active spectroscopy
IR spectroscopy
hyperspectral imaging
sensor control
information theory

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.