Discovery of Calcium-Metal Alloy Anodes for Reversible Ca-Ion Batteries

29 October 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Ca-ion batteries (CIBs) show promise to achieve the high energy density required by emerging applications like electric vehicles because of their potentially improved capacities and high operating voltages. The development of CIBs has been hindered by the failure of traditional graphite and calcium metal anodes due to the intercalation difficulty and lacking efficient electrolyte. Recently a high voltage (4.45 V) CIB cell using Sn as the anode was reported achieving a remarkable cyclability (> 300 cycles). The calciation of Sn was observed to end at Ca7Sn6, which is surprising, since higher Ca-content compounds are known (e.g. Ca2Sn). Here, we investigate computationally the Sn electrochemical calciation reaction process and explore the reaction driving force as a function of Ca content using density functional theory (DFT) calculations. This exploration allows us to identify threshold voltages which govern the limits of the calciation process. We then use this information to design a four-step screening strategy and use high-throughput DFT to search for anode materials with higher properties. We predict that many metalloids (Si, Sb, Ge), (post-)transition metals (Al, Pb, Cu, Cd, CdCu2) are promising inexpensive anode candidates and warrant further experimental investigations.


Calcium-ion battery
Alloy-type electrodes
High-throughput Screening
High energy density


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.