On the Geometrical Representation of Classical Statistical Mechanics

18 October 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work a geometrical representation of equilibrium and near equilibrium statistical mechanics is proposed. Using a formalism consistent with the Bra-Ket notation and the definition of inner product as a Lebasque integral, we describe the macroscopic equilibrium states in classical statistical mechanics by “properly transformed probability Euclidian vectors” that point on a manifold of spherical symmetry. Furthermore, any macroscopic thermodynamic state “close” to equilibrium is described by a triplet that represent the “infinitesimal volume” of the points, the Euclidian probability vector at equilibrium that points on a hypersphere of equilibrium thermodynamic state and a Euclidian vector a vector on the tangent bundle of the hypersphere. The necessary and sufficient condition for such representation is expressed as an invertibility condition on the proposed transformation. Finally, the relation of the proposed geometric representation, to similar approaches introduced under the context of differential geometry, information geometry, and finally the Ruppeiner and the Weinhold geometries, is discussed. It turns out that in the case of thermodynamic equilibrium, the proposed representation can be considered as a Gauss map of a parametric representation of statistical mechanics.

Keywords

Statistical Mechanics
Thermodynamics
Stochastic Process
Differential Geometry
Information Theory
Markov Chains
Monte Carlo
Geometry
Probability theory
Molecular Simulation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.