Flow Battery Electroanalysis 2: Influence of Surface Pretreatment on Fe(III/II) Redox Chemistry at Carbon Electrodes

25 September 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Redox flow batteries are attractive for large-scale electrochemical energy storage, but sluggish electron transfer kinetics often limit their overall energy conversion efficiencies. In an effort to improve our understanding of these kinetic limitations in transition metal based flow batteries, we used rotating-disk electrode voltammetry to characterize the electron-transfer rates of the Fe3+/2+ redox couple at glassy carbon electrodes whose surfaces were modified using several pre-treatment protocols. We found that surface activation by electrochemical cycling in H2SO4(aq) electrolyte resulted in the fastest electron-transfer kinetics: j0 = 0:90 mA/cm2 in an electrolyte containing 10 mM total Fe. By contrast, electrodes that were chemically treated to either remove or promote surface oxidation yielded rates that were at least an order of magnitude slower: j0 = 0:07 and 0:08 mA/cm2, respectively. By correlating these findings with X-ray photoelectron spectroscopy data, we conclude that Fe3+/2+ redox chemistry is catalyzed by carbonyl groups whose surface concentrations are increased by electrochemical activation.

Keywords

Redox Flow Battery
Electroanalysis
Kinetics
Glassy carbon
rotating disk electrode voltammetry
surface treatment

Supplementary materials

Title
Description
Actions
Title
Flow Battery 2- SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.