Aliphatic Radical Relay Heck Reaction at Unactivated C(sp3)–H Sites of Alcohols

20 September 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The Mizoroki−Heck reaction is one of the most efficient methods for alkenylation of
aryl, vinyl, and alkyl halides. Due to its innate nature, this protocol requires the employment of compounds possessing a halogen atom at the site of functionalization. However, the accessibility of organic molecules possessing a halogen atom at a particular site in aliphatic systems is extremely limited. Thus, a protocol that would allow a Heck reaction to occur at a specific non-functionalized C(sp3)−H site would be highly desirable.
Here, we report a radical relay Heck reaction which allows for a selective remote
alkenylation of aliphatic alcohols at unactivated β-, γ- and δ-C(sp3 20 )–H sites. The use of easily installable/removable Si-based auxiliary enables selective I-atom/radical translocation events at remote C−H sites followed by the Heck reaction. Notably, the reaction proceeds smoothly under mild visible light-mediated conditions at room temperature, producing highly modifiable and valuable alkenol products from readily available alcohols feedstocks.

Keywords

Palladium
Radical Relay
Remote Heck Reaction
Visible Light
C–H Functionalization

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.