On the Charging of Carboxylic Acid Monolayers with Monovalent Ions at Low Ionic Strengths: Molecular Insight Revealed by Vibrational Sum Frequency Spectroscopy

19 September 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The charging of arachidic acid Langmuir monolayers as a function of subphase pH and monovalent ion concentration below 100 mM was investigated using vibrational sum frequency spectroscopy. Molecular information was obtained by targeting the vibrational modes of the carboxylic acid headgroups, alkyl chains, and water molecules in the immediate surface and diffuse double layers. The surface charge in the monolayer was experimentally determined by monitoring the hydrated carboxylate stretching modes. The charging behaviour was found to be in excellent agreement with that predicted by Gouy-Chapman theory using a thermodynamic pKa of 5.1 ± 0.2. This resulted in an apparent pKa of ~10.8 when the only ions present in solution were those associated with adjusting the pH. Water molecules with a preferred orientation in the immediate surface region were found to primarily interact with the uncharged carboxylic acid moiety, decreasing in number as the monolayer further deprotonated. Contributions from water molecules in the diffuse double layer, partly aligned by the exponentially decaying surface electric field, closely followed the predictions of a recently proposed theoretical framework that accounts for interference and screening effects. Finally, the charging of the monolayer was experimentally found to be independent of the identity of either the monovalent cation (i.e., Li+, Na+, Rb+) or anion (i.e., F-, Cl-, I-) at low salt concentrations.


Gouy Chapman
apparent pKa

Supplementary materials

Supporting Info Arachidic acid monolayer monovalent ions Low concentration VSFS submission


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.