Extending the Crystal Landscape Through Electric Field Controlled Crystallization – a Molecular Dynamics Case Study

19 September 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Through molecular dynamics simulations, we report on a new development concerned with creating hitherto unknown polymorphs by influencing crystallization with a suitably constituted electric field. The methodology has the potential to add to crystallization technology whose exploration has been so far limited to the manipulation of temperature, solvent and additives. This enhanced scope for control of crystal structure with novel properties should serve the quest for advanced materials in industries as diverse as alternative energy, pharmaceuticals, and defense. Our methodology demonstrates the formation of a new crystal structure of glycine, created by the favorable alignment between the dipole moment of glycine in the new polymorphic form and the applied electric field. The electric field not only controls the crystal form by varying the molecular packing, but also the dissolution and growth kinetics, as well as the crystal morphology. Molecular dynamics is thus shown to be an effective tool in elucidating the power of an electric field in controlling crystal structure and its properties.


Electric Field
Molecular dynamics simulation


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.